Temperature-dependent shifts in phenology contribute to the success of exotic species with climate change.
نویسندگان
چکیده
PREMISE OF THE STUDY The study of how phenology may contribute to the assembly of plant communities has a long history in ecology. Climate change has brought renewed interest in this area, with many studies examining how phenology may contribute to the success of exotic species. In particular, there is increasing evidence that exotic species occupy unique phenological niches and track climate change more closely than native species. METHODS Here, we use long-term records of species’ first flowering dates from fi ve northern hemisphere temperate sites (Chinnor, UK and in the United States, Concord, Massachusetts; Fargo, North Dakota; Konza Prairie, Kansas; and Washington,D.C.) to examine whether invaders have distinct phenologies. Using a broad phylogenetic framework, we tested for differences between exotic and native species in mean annual flowering time, phenological changes in response to temperature and precipitation,and longer-term shifts in first flowering dates during recent pronounced climate change (“flowering time shifts”). KEY RESULTS Across North American sites, exotic species have shifted flowering with climate change while native species, on average, have not. In the three mesic systems, exotic species exhibited higher tracking of interannual variation in temperature,such that flowering advances more with warming, than native species. Across the two grassland systems, however, exotic species differed from native species primarily in responses to precipitation and soil moisture, not temperature. CONCLUSIONS Our findings provide cross-site support for the role of phenology and climate change in explaining species’ invasions.Further, they support recent evidence that exotic species may be important drivers of extended growing seasons observed with climate change in North America.
منابع مشابه
The impacts of climate change and meteorological factors on pollen season indicators of allergenic plant taxa
Pollen respiratory allergies have been increasing in prevalence over the last two decades, partly as the result of the impact of climate change. For many allergenic trees, grass and weed species, increased pollen production and prolonged pollination period result in long-term increased abundance of pollen allergens in the atmosphere; earlier shifts of airborne pollen grains and prolonged exposu...
متن کاملModeling the effects of climate change-induced shifts in reproductive phenology on temperature-dependent traits.
By altering phenology, organisms have the potential to match life-history events with suitable environmental conditions. Because of this, phenological plasticity has been proposed as a mechanism whereby populations might buffer themselves from climate change. We examine the potential buffering power of advancing one aspect of phenology, nesting date, on sex ratio in painted turtles (Chrysemys p...
متن کاملPhenological shifts conserve thermal niches in North American birds and reshape expectations for climate-driven range shifts.
Species respond to climate change in two dominant ways: range shifts in latitude or elevation and phenological shifts of life-history events. Range shifts are widely viewed as the principal mechanism for thermal niche tracking, and phenological shifts in birds and other consumers are widely understood as the principal mechanism for tracking temporal peaks in biotic resources. However, phenologi...
متن کاملComplex responses of insect phenology to climate change.
Insect phenologies are changing in response to climate warming. Shifts toward earlier seasonal activity are widespread; however, responses of insect phenology to warming are often more complex. Many species have prolonged their activity periods; others have shown delays. Furthermore, because of interspecific differences in temperature sensitivity, warming can increase or decrease synchronizatio...
متن کاملShifts in phenology due to global climate change: the need for a yardstick.
Climate change has led to shifts in phenology in many species distributed widely across taxonomic groups. It is, however, unclear how we should interpret these shifts without some sort of a yardstick: a measure that will reflect how much a species should be shifting to match the change in its environment caused by climate change. Here, we assume that the shift in the phenology of a species' foo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of botany
دوره 100 7 شماره
صفحات -
تاریخ انتشار 2013